Finding Composition Trees for Multiple-Valued Functions
نویسندگان
چکیده
The composition tree of a given function, when it exists, provides a representation of the function revealing all possible disjunctive decompositions, thereby suggesting a realization of the function at a minimal cost. Previously and independently, the authors had studied the class of multiplevalued functions that are fully sensitive to their variables. These functions are useful for test generation purposes, and almost all -valued -variable functions belong to this class as increases. All functions in this class have composition trees. This paper presents a recursive algorithm for generating the composition tree for any function in this class. The construction proceeds top-down and makes immediate use of any encountered decomposition, which reduces the (in general exponential) computation time.
منابع مشابه
Countable composition closedness and integer-valued continuous functions in pointfree topology
For any archimedean$f$-ring $A$ with unit in whichbreak$awedge (1-a)leq 0$ for all $ain A$, the following are shown to be equivalent: 1. $A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all integer-valued continuous functions on some frame $L$. 2. $A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$ of all integer-valued continuous functions, in the usual se...
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملFuzzy number-valued fuzzy relation
It is well known fact that binary relations are generalized mathematical functions. Contrary to functions from domain to range, binary relations may assign to each element of domain two or more elements of range. Some basic operations on functions such as the inverse and composition are applicable to binary relations as well. Depending on the domain or range or both are fuzzy value fuzzy set, i...
متن کاملSOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS
In this paper, we study fuzzy calculus in two main branches differential and integral. Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating $gH$-derivative of a composite function. Two techniques namely, Leibniz's rule and integration by parts are introduced for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997